Cellular Uptake of Tile-Assembled DNA Nanotubes
نویسندگان
چکیده
منابع مشابه
Cellular Uptake of Tile-Assembled DNA Nanotubes
DNA-based nanostructures have received great attention as molecular vehicles for cellular delivery of biomolecules and cancer drugs. Here, we report on the cellular uptake of tubule-like DNA tile-assembled nanostructures 27 nm in length and 8 nm in diameter that carry siRNA molecules, folic acid and fluorescent dyes. In our observations, the DNA structures are delivered to the endosome and do n...
متن کاملSelf-Assembled DNA Nanotubes
DNA, well-known as the predominant molecule for storage of genetic information in biology and biochemistry, has also been recognized as a useful building material in the field of nanotechnology. DNA provides basic building blocks for constructing functionalized nanostructures with four major features: molecular recognition, self-assembly, programmability, and predictable nanoscale geometry. The...
متن کاملPhysicochemical properties affecting cellular uptake of carbon nanotubes.
Carbon nanotubes (CNTs) are widely used for biomedical applications as intracellular transporters of biomolecules owing to their ability to cross cell membranes. In this article, we survey the reported literature and results of our published work in an attempt to provide a rational view of the various CNT internalization mechanisms. Essentially three uptake mechanisms (phagocytosis, diffusion a...
متن کاملDNA Nanotubes: Construction and Characterization of Filaments Composed of TX-tile Lattice
DNA-based nanotechnology is currently being developed for use in biomolecular computation, fabrication of 2D tile lattices, and engineering of 3D periodic matter. Here we present recent results on the construction and characterization of DNA nanotubes – a new self-assembling superstructure composed of DNA tiles. Triple-crossover (TAO) tiles modified with thiol-containing dsDNA stems projected o...
متن کاملKinetics of DNA Tile Dimerization
Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanomaterials
سال: 2014
ISSN: 2079-4991
DOI: 10.3390/nano5010047